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In a nutshell

* Planetary boundaries (climate change, biodiversity, N&P) at the
macro/aggregate level to which micro-level activities contribute

* Challenge 1: To be able do decide how to change these activities, we
need to know how they contribute to these boundaries accurately
(measuring the right thing in the correct way)

* Challenge 2: But we also need to know how these activities interact
with each other and how they relate to socio-economic dimensions
(cost, culture) to make societal choices

* Challenge 3: We need to translate knowledge into actions in complex
food systems



Challenges

Trade-off in terms of timing (now, later)

Trade-off between sectors (food, buildings, transport, industry,...)
Trade-off between activities within sectors (plant, animal)
Trade-off between impact categories (land, biodiversity)

Al S

Dynamic, non-linear, variable, uncertain and context-specific nature
of boundaries, activities and their interrelationships



Specific challenge

International collaboration leads to accounting rules that are different
from scientific life-cycle accounting, thus creating an additional trade-
off between nations (linked to cap-and-trade/negotiate dynamics)
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“Sustainable development is development that meets the
needs of the present without compromising the ability of
future generations to meet their own needs.

WCED, 1987. Our Common Future (Brundtland report)




“Sustainable development is development that meets the
needs of the present without compromising the ability of
future generations to meet their own needs.

It contains within it two key concepts:

- The concept of needs, in particular the essential needs
of the world’s poor, to which overriding priority should
be given;

- The idea of limitations by the state of technology and
social organization on the environment’s ability to meet
present and future needs”

WCED, 1987. Our Common Future (Brundtland report)




Fig. 3 The current status of the control variables for seven of the nine planetary boundaries.

Climate change

Biosphere Genetic
integrity diversity Novel entities
Functional
diversity
?
Land-system ' Stratospheric
change ozone depletion
7
Atmospheric aerosol
Freshwater loading
use
Phosphorus
Nitrogen Ocean acidification W Beyond zone of uncertainty (high risk)

O In zone of uncertainty (increasing risk)
@ Below boundary (safe)

Biogeochemical flows O Boundary not yet quantified

Will Steffen et al. Science 2015;347:1259855

Science

RAVAAAS

Copyright © 2015, American Association for the Advancement of Science



Limitations

Control variable

Boundary (uncertainty range)

Climate change Greenhouse-gas (CH, and N,O)

emissions
Nitrogen cycling Nitrogen application
Phosphorus cycling  Phosphorus application
Freshwater use Consumptive water use
Biodiversity loss Extinction rate

Land-system change Cropland use

5 Gt of carbon dioxide equivalent
per year (4-7-5-4)
90 Tg of nitrogen peryear (65-90;* 90-1307)
8 Tg of phosphorus peryear (6-12;* 8-167)
2500 km® peryear (1000-4000)
Ten extinctions per million species-years (1-80)

13 million km* (11-15)

*Lower boundary range if improved production practices and redistribution are not adopted. TUpper boundary range
if improved production practices and redistribution are adopted and 50% of applied phosphorus is recycled.

Table 2: Scientific targets for six key Earth system processes and the control variables used to quantify

the boundaries

Willet et al., 2019, The Lancet




Macronutrient Caloric
intake (possible intake,
range), g/day kcalfday
Whole grains™
N d Rice, wheat, corn, and othert 232 (total gains 811
e e S 0-60% of energy)
Tubers or starchy vegetables
Potatoes and cassava 50 (0-100) 39
Vegetables
All vegetables 300 (200-600)
Dark green vegetables 100 23
Red and orange vegetables 100 30
Othervegetables 100 25
Fruits
All fruit 200 (100-300) 126
Dairy foods
Whole milk or derivative equivalents 250 (0-500) 153
(eg, cheese)
Protein sourcest
Beef and lamb 7 (0-14) 15
Pork 7 (0-14) 15
Chicken and other poultry 29 (0-58) 62 For an individual, an optimal energy intake to maintain a healthy weight will
Eqgs 13 (0-25) 19 dep?nd on body sizje and Itf_-.rel G‘Fp_r'lyrsical ac_t'r'.r ity. PFDCEF_.S_I-FIQ of foods such as
Fishs 28 (0-100) 40 partial h}rfirngena‘ncn of oi Is, refining of grains, E_lnd addition of sa_ll't ar?d
preservatives can substantially affect health but is not addressed in this table.
Legumes *Wheat, rice, dry beans, and lentils are dry, raw. tMix and ameunt of grains can vary
Dry beans, lentils, and peas™ 50(0-100) 172 to maintain isocaloric intake. $Beef and lamb are exchangeable with pork and vice
Soy foods 25(0-50) 112 versa. Chicken and other poultry is exchangeablewith eggs, fish, or plant protein
Peanuts 25(0-75) 142 sources. Legumes, peanuts, tree nuts, seeds, and soy are interchangeable. §5eafood
Tree nuts 25 149 consist of fish and shellfish (eg, mussels and shrimps) and originate from both
Added fats capture and from farming. Although seafood is a highly diverse group that contains
Palm ail 6.8 (0-6-8) 60 both animals and plants, the focus of this report is solely on animals. fUnsaturated
Unsaturated oils] 40 (20-80) 354 oils are 20% each of olive, soybean, rapeseed, sunflower, and peanut oil. ||Some lard
) _ o or tallow are optional in instances when pigs or cattle are consumed.
Dairy fats (included in milk) 0 0
Lard or tallow|| 5 (0-5) 36 . . . . .
Willet et al., 2019, The Lancet  addedsugars kgt it possbleranges foranntakect
All sweeteners 31(0-31) 120
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Figure 1: Diet gap between dietary patterns in 2016 and reference diet intakes of food
Data on 2016 intakes are from the Global Burden of Disease database.”" The dotted line represents intakes in
reference diet (table 1).

Willet et al., 2019, The Lancet
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Foodgroup  —®— Plant-based foods —®— Fish - Dairyandeggs —®— Meat
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Environmental effect

Figure 4: Environmental effects per serving of food produced

Bars are mean (SD).*"** Some results are missing for fish due to lack of data for some impact categories (eg, land use stemming from plant-based feeds in aquaculture).
This was, however, accounted for in the global food systems modeling framework used in Section 3. CO,=carbon dioxide. Eq=equivalent. PO ,=phosphate.

SO,=sulphur dioxide.

Willet et al., 2019, The Lancet
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Figure 5: Environmental effects in 2010 and 2050 by food groups on various Earth systems based on
business-as-usual projections for consumption and production
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Fig. 2. (A) Absolute environmental impacts of average diets for different national income groups per person. (B) Differences in environmental impacts
between average and recommended diets per person. Net change and change by food group are shown. Both panels give GHG and eutrophication emissions
in terms of per day and land use in ongoing, yearly requirement. Land use in Australia has been truncated in both panels for ease of visualization (in A, total
Australian land use is 3.3 ha; in B the change is a reduction of 1.0 ha).

Behrens et al., 2017, PNAS



Key challenge 1

* How to measure contributions to these boundaries accurately? How
to measure the right thing in a correct and consistent way?
* Taking into account:
* Trade-off between sectors (food, buildings, transport, industry,...)

* Trade-off between activities within sectors (plant, animal) -
displacement effects

* Trade-off between impact categories (land, biodiversity) -
weighing impacts

* Dynamic, non-linear, variable, uncertain and context-specific
nature of boundaries, activities and their interrelationships



Main LCA phases (ISO 14040)

 Step 1: Defining the goal and scope of the study

* Step 2: Making a model of the product life cycle with all the
environmental inputs and outputs = life cycle inventory (LCI)

 Step 3: Understanding the environmental relevance of all the inputs
and outputs = life cycle impact assessment (LCIA)

e Step 4: The interpretation of the study

Source: Goedkoop et al. (2016),
Introduction to LCA with SimaPro



Goal and scope definition

* Reason for executing LCA (questions which need to be answered)
* Precise definition of product, its life cycle and function it fulfills

 Definition of functional unit (especially when products are to be
compared): kg, ha, kcal, kg protein,...

* Description of system boundaries and how to deal with co-production
e Data and data quality requirements, assumptions and limitations

* Requirements regarding LCIA procedure + interpretation

* Intended audiences and how results will be communicated

* |f applicable, how peer review will be made

* Type and format of the report required for the study



System boundaries

1. First order: only the production of materials and transport are included
(this is rarely used in LCA)

2. Second order: All processes during the life cycle are included but the
capital goods are left out.

3. Third order: All processes including capital goods are included. Usually
capital goods are only modeled in first order mode (only production of
materials needed to produce the capital goods are included)

Inputs or outputs are not considered if they are below certain threshold
(mass flow, economic value, contribution to environmental load)



Dealing with multifunctional processes

 System expansion (consequential modeling)

* Allocation (attributional modeling):
1. Subdivide the multifunctional process
2. Determine a physical causality for allocation

3. Use economic revenue as the key for allocation when physical
relationship cannot be established



Inventory

1. Foreground data: specific data needed for modeling system.
Typically, it is data that describe a particular product system or a
specialized production system.

2. Background data: data for production of generic materials, energy,
transport and waste management (in SimaPro databases—
ecoinvent—and from literature)



Impact assessment

Environmental
interventions

water and soil)

® Physical modification
of natural area
(e.g., land conversion)

® Noise

1]/

Impact
categories

® Human toxic effects
® Ozone depletion

® Photochemical
ozone creation

® Ecotoxic effects
® Eutrophication
® Acidification

® Biodiversity

Damage
categories

Resource depletion

Ecosystem quality
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Source: UNEP/SETAC, 2011,

Towards a Life Cycle

Sustainability Assessment



Interpretation

* Uncertainty analysis
 Variation in the data
* Correctness (representativeness) of the model
* Incompleteness of the model

e Sensitivity analysis

e Contribution analysis



An example

* Nguyen et al. (2010). Environmental consequences of different beef
production systems in the EU. Journal of Cleaner Production 18, 756-
766.

* Functional unit: one kg meat slaughter weight delivered from farms
* SimaPro/ecoinvent, five impact categories

* Also effect of indirect land use change included: carbon emissions
from land conversion depreciated over 20 years
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Fig. 1. System boundary of beef fattening. Legend: [§& transport by truck; s transport by ship. " For the suckler cow-calf system, calf rearing was modelled to be integrated in beef
fattening, whereas for the dairy bull calf systems, it was considered as a separate process.



Table 7

Comparative LCA of the four systems per kg meat (slaughter weight) delivered from

farms.
Impact category Unit Suckler  Dairy bull calffage at slaughter
coc alt A2 B/16  C(Steers)
months months 24 months
Global warming kg COze 27.3 16.0 17.9 19.9
(without land use
consideration)
Acidification g50,e 210 101 131 173
Eutrophication gNO;e 1651 622 737 1140
Non-renewable energy M] primary 59.2 413 41.7 48.2
Land occupation m?year 429 16.5 16.7 22.7
Grassland 369 0 2.0 18.2
Highly productive 6.81 0 1.97 8.34
Moderately 0 0 0 9.82
productive
Low productive 30.07 0 0 0
Cropland 6.0 16.5 14.7 4.5
Cereals 5.94 12.39 11.48 4.50
Soy meal 0.05 4.11 3.25 0.04

Nguyen et al. (2010)



kg COe/kg meat

(=]
=]
]

m opportunity cost of land use Table 6

for grass (extensive grazing) Estimated carbon emissions from land conversion.
& opportunity cost of land use Region Forest to cropland Forest to grassland
for grass (intensive rearing)
. Total carbon lost kg CO,/ Total carbon lost kg CO»/
60 —+ -E------- - e - @ opportunity cost of land use weighted average m?year® weighted average m?year®
for cereals t C/ha? t that'
2 land use change from forest to Developed 129.8 >4 106.4 19
cropland (soy meal) .
Pacific
0O without land use consideration MNorth Africa and 110.5 2.0 883 1.6
L | e __ . I | _ Middle East
-~ Canada 148.8 27 100.0 1.8
b e
e N s s B The United 193.6 3.5 159.0 2.9
o= States
Latin America  163.7 3.0 139.9 2.6
South and 2257 41 2021 3.7
T T . . T . T T , Southeast
.3 .3 .3 .3 Asia
TS ® W OF 93 ®F 0F <5 <& Africa 95.9 1.8 66.0 1.2
I8 % 88 ® 8 S8 8§38 T8 §8 Europe 170.9 3.1 1386 2.5
g5 85 g8 25 =5 ==& S5 S5
Sd O@ ST @ I S @ D@ S@& S o Former Soviet  149.6 2.7 107.6 2.0
5C & o - -y »E Se ST Union
$8 38 §8 58 §8 §8 58 §8 i
3 > 3 a a a a 3> 8> Weighted 153.1 2.8 120.4 2.2
?8 °8 &8 8 & 8 & 8 average
. , o ) 2 Total C lost = biomass C + ongoing C uptake + soil C = 25% (Searchinger et al.,
Fig. 3. Potential effect of land use on GHG emissions from EU beef fattening systems. 2008).

® Total C lost =biomass C + ongoing C uptake + soil C x 0% (Murty et al., 2002).

€ kg CO,/m?year = weighted average t C/ha=x3.67tC02/t C x 1000 kg/
t = 10,000 m?/ha = 20 years.

Nguyen et al. (2010)
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Fig. 1. Carbon footprints per kilogram of protein.
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Journal of Cleaner Production 153 (2017) 309—-319

- - : . §
Contents lists available at ScienceDirect Cleaner

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

The contribution to climate change of the organic versus conventional @Cmssmk
wheat farming: A case study on the carbon footprint of wholemeal
bread production in Italy

Maria Vincenza Chiriaco *”, Giampiero Grossi °, Simona Castaldi * ™,
Riccardo Valentini *¢

2 Division on Impacts on Agriculture, Forests and Ecosystem Services, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Viterbo,
——————————————— 1 Italy
b Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Universita degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi, 43,
81100 Caserta, Italy
© Far East Federal University (FEFU), Vladivostok, Russky Island, Russia
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Fig. 1. Boundaries system of the Life Cycle Assessment of organic and conventional wholemeal bread produced in central Italy by a small-medium bakery and sold in retail shops as
packaged loafs of 1 kg (T is transport).



Table 7

GHG emissions of each phase of the life cycle of organic and conventional whole-
meal bread production and distribution, per functional unit (FUyg) of wholemeal
bread and per unit of area (hectare). The wheat cultivation for the production of 1 kg
of wholemeal bread (1 FUyg is 8,52 m? in organic farming and 2,13 m? in conven-
tional farming.

Life cycle phases kg COzeq FUg Mg CO»eq ha !
Organic wheat seeds 0,1 0,12
Packaging of wheat seeds 0,001 0001
Direct and indirect soil emissions 0,42 0,5
Fuel production and consumption 0,46 0.5
Transport 0,005 0006
Total organic farming 0,98 1,15
Conventional wheat seeds 0,02 0,10
Packaging of wheat seeds 0,00005 0,0002
Fertilizers production 0,34 1,6
Fungicide, pesticides and herbicide 0,002 0008
Direct and indirect soil emissions 0,13 0,6
Fuel production and consumption 0,11 0.5
Transport 0,004 0,02
Total conventional farming 0,61 2,87
Hydro Electric Power 0,0004

Packaging of flour (paper) 0,004

Transport 0,01

Total milling 0,015

Electricity (IT energetic mix) 0,174

Salt 0,0002

Packaging (paper, HDPE) 0,008

Transport 0,16

Total Bakery 0,35

Transport of the FU 0,21

Total Retail 0,21
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Key challenge 2

* How do activities interact with each other and how they relate to
socio-economic dimensions (cost, culture) to make societal choices

* What underlying values do we apply?
* Whose values matter? Anthropocentric versus ecocentric
* Can we discount the future?
* |s substitution allowed? Weak versus strong sustainability
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Figure 23 | Under the Breakthrough Technologies scenario, agricultural greenhouse gas emissions
would fall dramatically but reforestation and peatland restoration would be necessary to
meet the target of 4 gigatons per year
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GHG-efficient food production practices
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Abstract

This trans-disciplinary study assesses total external environmental and health costs of
modern agriculture in the UK. A wide range of datasets have been analysed to assess cost
distribution across sectors. We calculate the annual total external costs of UK agriculture in
1996 to be £2343 m (range for 1990-1996: £1149-3907 m), equivalent to £208/ha of arable and
permanent pasture. Significant costs arise from contamination of drinking water with pesti-
cides (£120 m/year), nitrate (£16 m), Cryptosporidium (£23 m) and phosphate and soil (£55 m),
from damage to wildlife, habitats, hedgerows and drystone walls (£125 m), from emissions of
gases (£1113 m), from soil erosion and organic carbon losses (£106 m), from food poisoning
(£169 m), and from bovine spongiform encephalopathy (BSE) (£607 m). This study has only
estimated those externalities that give rise to financial costs, and so is likely to underestimate
the total negative impacts of modern agriculture. These data help to identify policy priorities,
particularly over the most efficient way to internalise these external costs into prices. This
would imply a redirection of public subsidies towards encouraging those positive externalities
under-provided in the market place, combined with a mix of advisory and institutional
mechanisms, regulatory and legal measures, and economic instruments to correct negative

* Corresponding author. Fax: +44-1206-87-34-16.
E-mail address: jpretty @essex.ac.uk (J.N. Pretty).

0308-521X,00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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Table 1

The annual total external costs of UK agriculture, 1996 (range values for 1990-1996)*

Cost category UK Range”
(£ nullion) (£ mulhon)

1. Damage to natural capital — water

la. Pesticides in sources of drinking water 120 B4-129

Ib. Nitrate 1n sources of drinking water 16 8-33

Ic. Phosphate and soil in sources of drinking water 55 22-90

1d. Zoonoses (esp. Cryprosporidium) in sources of drinking water 23 15-30

le. Eutrophication and pollution incidents (fertilisers, animal wastes, 6 47

sheep dips)

If. Monitoring and advice on pesticides and nutrients 11 8-11

2. Damage to natural capital — air

2a. Enussions of methane 280 248-376

2b. Emussions of ammonia 48 23-72

2¢. Emissions of nitrous oxide 738 4181700

2d. Enussions of carbon dioxide 47 35-85

3. Damage to natural capital — soil

3a. Off-site damage caused by erosion® 14 830

3b. Organic matter and carbon dioxide losses from soils 82 59-140

4. Damage to natural capital — biodiversity and landscape

4a. Biodiversity /wildhfe losses (habitats and species) 25 10-35

4b. Hedgerows and drystone walls 99 73-122

4c. Bee colony losses 2 12

4d. Agricultural biodiversity t+d 1

3. Damage to human health — pesticides

5a. Acute effects 1 0.4-1.6

5b. Chronic effects t 1

6. Damage to human health — nitrate 0 0

7. Damage to human health: microorganisms and other disease agenis

Ta. Bactenal and viral outbreaks in food 169 100-243

Tb. Antibiotic resistance t 1

7c. BSE® and nvCID 607 33-800

Total 2343 1149-3907

# This table does not include private costs bome by farmers themselves.

b The ranges for costs do not represent formal standard deviations of the data as this is impossible
given the huge variation in types of data and contexts. The ranges represent best estimates for higher and
lower quartiles for costs incurred annually during the 1990s. The range values for the external costs in
category 2 are calculated from the ranges stated in studies of external costs of each of these gases, rather

than the variation of emissions during the 1990s.

¢ The offsite damage caused by erosion in category 3a does not include the costs of removing soils/

sediments from drinking water (these are in cost category lc).
4+, Not yet able to calculate costs.
¢ BSE costs are an average for 1996 and 1997.



Table 5. External costs per hectare and per kilogram related to the
expected global warming, acidification and eutrophication impacts
of the three production groups.

Conventional Integrated Organic

Costs per hectare
Global warming (£/ha) 1045.2 1005.0 1206.0
P Addification (€/ha) 21.2%/%* 242 30.9
International Journal of Agricultural Sustainability Eutrﬂphicatign (€/ha) 16.6 15.5 194
Total external cost (€/ha) 1083.0 1044.7 1256.3
; Costs per kilogram
SN 1475-5503 Prin 1747762 (Online ournal homepage: s wvsandioniing comoiagsze Global warming 2.6 2.2 6.1%/***
Calculating environmental cost indicators of apple (0.01 E"'Ikg}
farm practices indicates large differences between Addification (0.01€/kg) 0.1 0.1 0.1% /%%
growers Eutrophication (0.01€/kg) 0.03 0.03 0.7%/xxx
Bernd Annaert, Yanne Goossens, Annemie Geeraerd, Erik Mathijs & Liesbet Total external cost 2.7 23 (0% 5 A
Vranken (0.01 Eﬂ(g}
To cite this article: Bernd Annaert, Yanne Goossens, Annemie Geeraerd, Erik Mathijs & Liesbet
e e o racoss et e *Significantly different from the integrated group (p <.01) (based on

DOI: 10.1080/14735903.2017.1353721

Kolmogorov-5mirnov test).

**Significantly different from the organic group (p < .01) (based on
Kolmogorov—5Smirnov test).

***Significantly different from the conventional group (p < .01) (based
on Kolmogorov-5mirnov test).




Key challenge 3

We need to translate knowledge into actions in complex food systems
* Difficult to determine boundaries

* May be open

* May have a memory

* May be nested

* May produce emergent phenomena (sum > parts)

* Relationships are non-linear and contain feedback loops:

 entities seeking balance but can show oscillating, chaotic or exponential
behavior

* unintended consequences




Global Food System Map

eenhouse

:->Sodo.
Cultural

Mg ==

v
|
Consumers

Waste e oy rmtnet wimmim, rerycing Sagone

N Tramiport ZI777 s agheier B

_Value Chain Food | du

Glodal Trade & Transport

SUPPLY-Farming A Food-DEMAND Shifto

VLIS e, 2y ety 2 ravdfenty



110 THE LimiTs To GROWTH ' GROWTH IN THE WORLD $YSTEM 111

rucTine
EwueEs 4
R

e

[} THELIMITSTO | m ' . y 2 : " LIMITS 10
Y GROWTH

oo
e pos -
Lyt

L

04 S,

William W. Behrens il

A Report for THE CLUB OF ROME'S Project on the
Prodicament of Mankind

T & R

m A POTOMAC ASSOCIATES BOOK $275

AL
ity

Figure 1 Stock-and-flow diagram of the world system



Leadership Culture Population growth
Natural resource capital Innovation Globalization and trade Religions & rituals Changing age distribution
Ecosystem services Technology Conflicts and humanitarian crises Social traditions Urbanization
Climate change Infrastructure Food prices and volatility Women’s empowerment Migrataon & forced
J \ Land tenure ), \ displacement

\

‘

Food

»

Food supply chains

environments
F. . ind# R <
Production W . et > Food availability and physical Nutrition
- systems owners, fisheries, financial entities, access (proximity)
' Diets and health
T ard i X Economic access ‘ outcomes
distributior agribusiness, distributors i (affordability) w
. - e Promotion, advertising and Quality
< ac ants, an ek
W ne'verag? i:ausn'y. small any information DIM S Impa
| packaging medi terpri ety cts
oy Food quality and safety Sy ‘
[ . Retailers, vendors, food .
x 'nd spryiniony irr;ers.. >N Social
mar m ; 1 nteurs, wi S Economic
\_ =" Environmental
Political, programme and institutional actions —cﬂ”ﬁy&é

Sustainable Development Goals

1 B 3 5 e 6 Wistma o B s RUSNERY | P ﬂm_ 135
BEEAAE HoG - CREB

ey




%z? sustainability

Py
Article
Development of Organic Farming in Europe at the

Crossroads: Looking for the Way Forward through
System Archetypes Lenses

Natalia Brzezina 1-*, Katharina Biely 2, Ariella Helfgott 3,4 Birgit Kopainsky 5, Joost Vervoort 3,4
and Erik Mathijs !

Sustainable Food Economies Research Group, KU Leuven, 3001 Leuven, Belgium; erik.mathijs@kuleuven.be
2 Centre for Environmental Sciences, Hasselt University, 3500 Hasselt, Belgium; katharina biely@uhasseltbe
Environmental Change Institute, University of Oxford, Oxford OX1 3PA, UK;
ariella.helfgott@ouce.ox.ac.uk (A.H.); joost.vervoort@eci.ox.ac.uk (J.V.)

Copernicus Institute of Sustainable Development, Utrecht University, 3512 JE Utrecht, The Netherlands
System Dynamics Group, University of Bergen, 5020 Bergen, Norway; birgit.kopainsky@uib.no

*  Correspondence: natalia.brzezina@kuleuven.be; Tel.: +32-466-141-702

Academic Editors: Manuel Gonzilez de Molina and Gloria Guzman
Received: 31 March 2017; Accepted: 9 May 2017; Published: 15 May 2017

Evaluating patterns
rather than just
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Beyond sustainability: resilience

* Increasing risks and uncertainty: shocks and trends
* Vulnerability and resilience

* Relationship between sustainability and resilience?



What iIs resilience?

# The capacity of individuals, businesses, communities, or systems

# to respond to perturbations (shocks or persistent stress, natural or

anthropogenic origin),

# that can push a system towards a tipping point where it can no longer

maintain its previous state and fulfil its functions (collapse).

This project has received funds
from the European Union’s
Horizon 2020 research and
innovation programme under
Grant Agreement No 727520
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Three dimensions of resilience

from the European Union’s
Horizon 2020 research and
innovation programme under
Grant Agreement No 727520

This project has received funds

Robustness: the capacity of a system to resist/withstand
perturbations and to maintain previous levels of functionality
without major changes to its internal elements and processes

Adaptability: the capacity of a system to change internal
elements and processes in response to changing external
circumstances and thereby to continue its development along
the previous trajectory while maintaining functionalities

Transformability: the capacity of a system to radically change,
including its identity, paradigms and logics
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Beyond sustainability: resilience

1. Resilience of what?

2. Resilience to what?

3. Resilience for what purpose?

4. What resilience capacities?

5. What enhances resilience?

Fig. 2. Framework to assess resilience of farming systems.
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Indicator

What to look for

Socially self-organized

Farmers and consumers are able to organize into grassroots networks and institutions such as co-ops,
farmer’s markets, community sustainability associations, community gardens, and advisory networks

Ecologically self-regulated

Farms maintain plant cover and incorporate more perennials, provide habitat for predators and
parasitoids, use ecosystem engineers, and align production with local ecological parameters

Appropriately connected

Collaborating with multiple suppliers, outlets, and fellow farmers; crops planted in polycultures that
encourage symbiosis and mutualism

Functional and response diversity

Heterogeneity of features within the landscape and on the farm; diversity of inputs, outputs, income
sources, markets, pest controls, etc.

Optimally redundant

Planting multiple varieties of crops rather than one, keeping equipment for various crops, getting
nutrients from multiple sources, capturing water from multiple sources

Spatial and temporal heterogeneity

Patchiness on the farm and across the landscape, mosaic pattern of managed and unmanaged land,
diverse cultivation practices, crop rotations

Exposed to disturbance

Pest management that allows a certain controlled amount of invasion followed by selection of plants that
fared well and exhibit signs of resistance

Coupled with local natural capital

Builds (not deplete) soil organic matter, recharges water, little need to import nutrients or export waste

Reflective and shared learning

Extension and advisory services for farmers; collaboration between universities, research centers, and
farmers; record keeping; baseline knowledge about the state of the agroecosystem

Globally autonomous and locally
interdependent

Less reliance on commodity markets and reduced external inputs; more sales to local markets, reliance on
local resources; farmer co-ops, close relationships producer - consumer, shared resources (equipment )

Honors legacy

Maintenance of heirloom seeds and engagement of elders, incorporation of traditional cultivation
techniques with modern knowledge

Builds human capital

Investment in infrastructure and institutions for the education of children and adults, support for social
events in farming communities, programs for preservation of local knowledge

Reasonably profitable

Farmers and farm workers earn a livable wage; agriculture sector does not rely on distortionary subsidies
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Concluding remarks

* Indicators measure impact on a set of human and non-human
categories

 Sustainability metrics should go beyond impact indicators taking into
account underlying structures

e Relationship between impact and structures is not straightforward
and e.g. scale dependent



